Data supporting the role of the non-glycosylated isoform of MIC26 in determining cristae morphology

نویسندگان

  • Sebastian Koob
  • Miguel Barrera
  • Ruchika Anand
  • Andreas S. Reichert
چکیده

Membrane architecture is crucially important for mitochondrial function and integrity. The MICOS complex is located at crista junctions and determines cristae membrane morphology and the formation of crista junctions. Here we provide data of the bona fide MICOS subunit MIC26 for determining cristae morphology. MiRNA-mediated downregulation of MIC26 results in higher protein levels of MIC27 and in lower levels of Mic10. Using a miRNA-resistant form to MIC26 we show that this effect is specific to MIC26. Our data further demonstrate that depletion of MIC26 primarily affects the level of the 22 kDa mitochondrial isoform of MIC26 but not the amount of the secreted 55 kDa isoform of MIC26. Depletion of MIC27, however, increases secretion of the latter isoform. Overexpression of a myc-tagged version of MIC26 resulted in altered cristae morphology with swollen and partly vesicular cristae-structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology

The mitochondrial contact site and cristae junction (CJ) organizing system (MICOS) dynamically regulate mitochondrial membrane architecture. Through systematic proteomic analysis of human MICOS, we identified QIL1 (C19orf70) as a novel conserved MICOS subunit. QIL1 depletion disrupted CJ structure in cultured human cells and in Drosophila muscle and neuronal cells in vivo. In human cells, mitoc...

متن کامل

APOOL Is a Cardiolipin-Binding Constituent of the Mitofilin/MINOS Protein Complex Determining Cristae Morphology in Mammalian Mitochondria

Mitochondrial cristae morphology is highly variable and altered under numerous pathological conditions. The protein complexes involved are largely unknown or only insufficiently characterized. Using complexome profiling we identified apolipoprotein O (APOO) and apolipoprotein O-like protein (APOOL) as putative components of the Mitofilin/MINOS protein complex which was recently implicated in de...

متن کامل

Mic13 Is Essential for Formation of Crista Junctions in Mammalian Cells

Mitochondrial cristae are connected to the inner boundary membrane via crista junctions which are implicated in the regulation of oxidative phosphorylation, apoptosis, and import of lipids and proteins. The MICOS complex determines formation of crista junctions. We performed complexome profiling and identified Mic13, also termed Qil1, as a subunit of the MICOS complex. We show that MIC13 is an ...

متن کامل

Stoichiometric expression of mtHsp40 and mtHsp70 modulates mitochondrial morphology and cristae structure via Opa1L cleavage

Deregulation of mitochondrial heat-shock protein 40 (mtHsp40) and dysfunction of mtHsp70 are associated with mitochondrial fragmentation, suggesting that mtHsp40 and mtHsp70 may play roles in modulating mitochondrial morphology. However, the mechanism of mitochondrial fragmentation induced by mtHsp40 deregulation and mtHsp70 dysfunction remains unclear. In addition, the functional link between ...

متن کامل

P-121: Cloning and Expression of The Inosine Triphosphate Pyrophosphatase Gene Variant II in E.coli

Background Environmental and cellular inappropriate conditions can cause damages to cells nucleotide poll. Deamination and oxidation damages interfere with cell�s vital reactions. Inosine triphosphate pyrophosphatase (ITPA), an evolutionary conserved enzyme, plays a critical role in elimination of non-canonical bases. In human genome, the ITPA gene is located on chromosome 20 short arm and tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015